
Adventures in Writing an Operating
System

K. Isom

Nov 09, 2023

CONTENTS:

1 Chapter 1: Introduction 1
1.1 The first target . 1
1.2 Booting the target . 2
1.3 Resources . 3
1.4 Footnotes . 3

2 Chapter 2: Build infrastructure 5
2.1 aarch64-none-elf toolchain . 5
2.2 Makefile . 5

3 Chapter 3: Base-bones scaffolding 9
3.1 kmain.cc . 9
3.2 boot.S . 9
3.3 The linker script . 10
3.4 The future . 13
3.5 Footnotes . 13

4 Chapter 4: First Steps: The UART 15

5 Appendix A: LED error patterns 17

6 Appendix B: The kOS Makefile 19

7 Bibliography 23

8 Indices and tables 25

i

ii

CHAPTER

ONE

CHAPTER 1: INTRODUCTION

I’ve wanted to write an general purpose operating system for a long time - it’s one of my computing bucketlist items.
kOS, pronounced “chaos”, is my project to do that. Along the way, I’m going to write up my work1 to help me
understand what’s going on.

kOS will be a 64-bit operating system.

1.1 The first target

The first target is the Raspberry Pi 4B; mine has 8GB of memory available. It has a Broadcom BCM2711 System on
Chip (SoC), which features a Cortex A72 quad-core ARMv8 processor running at 1.5 GHz. The L1 cache is 32kB for
data, 48kB for instructions, and the L2 cache is 1MB. It also has a Videocore VI GPU, which has built-in support for
OpenGL ES 3.1 and Vulkan 1.2.

As for I/O, it has a PCIe bus, a DSI2 and CSI3 bus4, support for up to six I2C buses, up to six UARTs5, and up to five
SPI buses6. There are also a pair of HDMI outputs.

The BCM2711 has 58 general purpose I/O lines; 27 of these are exposed via the 40-pin header on the Raspberry Pi.

Some of the relevant pinouts:

Fig. 1: 40-pin header pinout diagram, courtesy of pinout.xyz.

1 Or at least try to. . . no guarantees I’ll keep up on it.
2 Display Serial Interface.
3 Camera Serial Interface.
4 Technically, the processor has two DSI and two CSI buses, but there are only one of each exposed on the Raspberry Pi.
5 Universal Asynchronous Receiver Transmitter, aka serial ports.
6 Again, technically there are six, but only five are exposed on the Raspberry Pi.

1

https://log.wntrmute.dev/bucketlist.html
https://pinout.xyz
https://www.mipi.org/current-specifications
https://www.mipi.org/current-specifications

Adventures in Writing an Operating System

1.2 Booting the target

The Raspberry Pi documentation describes the boot sequence; there is an SPI flash EEPROM that has the initial boot-
loader.

1. The SoC powers up.

2. If the nRPIBOOT GPIO is high, or if the OTP hasn’t configured an nRPIBOOT pin7, try to load recovery.bin8

and update the SPI EEPROM.

3. Try to load the second-stage bootloader from the SPI EEPROM.

4. Initialize SDRAM and clocks.

5. Read the EEPROM configuration files ().

6. Check to see if a HALT is requested.

7. Read the next boot mode from the BOOT_ORDER parameter in the EEPROM configuration. The boot modes are:

• RESTART: jump back to the first boot mode in the parameter.

• STOP: display the start.elf error pattern (see the appendices for a description of these) and loop indefinitely.

• SD_CARD: try to load from the SD card.

• NETWORK: use DHCP to get an IP address, then use either DHCP or TFTP to get a boot image.

• USB-MSD: check for USB mass storage, and try to load firmware from each LUN discovered.

• NVME: the same, but using NVMe.

• RPIBOOT: trying to load firmware from a USB device connected to the USB-OTG port.

The first partition on the SD card must be a FAT partition, from which the bootloader looks for certain files:

• Prior to the Pi 4, bootcode.bin is loaded first, which then loads a start.elf variant. The Pi 4 uses its SPI
EEPROM instead.

• The start.elf variants are firmware. The start4 versions are used for the Raspberry Pi. - start.elf: basic
firmware. - start_x.elf: has additional codecs. - start_db.elf: used for debugging. - start_cd.elf:
cut-down firmware, removing hardware blocks.

• The start.elf firmware is paired with an appropriately-named linker file, fixup.dat.

• config.txt: RPi configuration.

• overlays/: device-tree overlays

The minimum we’ll need to bring up the kernel are

• bcm2711-rpi-4-b.dtb

• config.txt

• fixup4.dat

• start4.elf

Finally, our kernel8.img will go in the partition.
7 The docs point out that only the CM4 configures an nRPIBOOT pin.
8 recovery.bin contains a minimal second-stage bootloader to reflash the SPI EEPROM.

2 Chapter 1. Chapter 1: Introduction

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#raspberry-pi-4-and-raspberry-pi-5-boot-flow

Adventures in Writing an Operating System

1.3 Resources

• The OSDev Wiki

• BCM2711 ARM Peripherals

• ARM Cortex-A72 MPCore Processor Technical Reference Manual

1.4 Footnotes

1.3. Resources 3

https://wiki.osdev.org/
https://datasheets.raspberrypi.com/bcm2711/bcm2711-peripherals.pdf
https://developer.arm.com/documentation/100095/0001/

Adventures in Writing an Operating System

4 Chapter 1. Chapter 1: Introduction

CHAPTER

TWO

CHAPTER 2: BUILD INFRASTRUCTURE

2.1 aarch64-none-elf toolchain

If you’ve done other bare-metal ARM projects, you might be used to the arm-none-eabi toolchain. For this project,
we’ll need the arm64 equivalent: aarch64-none-elf. You’ll probably need to fetch this from the ARM toolchain
download page and add it to your PATH. I unpacked it into ~/.local/aarch64-none-elf, and added the bin dir to
my PATH.

2.2 Makefile

Later on, this might get more complicated; for now, a short Makefile will suffice. The code will be laid out as

.
build
inc
src

First, we’ll set up some basic tooling and variables:

VARIABLES
B - build dir
D - disk (SD) image
H - header file / include dir
I - output image (place this on µSD card)
L - linker script
M - map file
P - path to sources
S - assembler listing
T - toolchain
B ?= build
D ?= $(B)/sd.img
H ?= inc
I ?= $(B)/kernel8.img
L ?= pi4.ld
M ?= $(B)/kernel8.map
P ?= src
S ?= $(B)/kernel8.list
T ?= aarch64-none-elf

(continues on next page)

5

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

Adventures in Writing an Operating System

(continued from previous page)

PLATFORM := pi4
ELF := $(B)/kospi64.elf

AS := $(T)-as
CC := $(T)-gcc
CXX := $(T)-g++
LD := $(T)-ld
OC := $(T)-objcopy
OD := $(T)-objdump

The build flags will be fairly standard using compile flags targeting the Cortex A72; we will be providing out own
startfile and standard library.

BUILD_FLAGS := -O2 -Wall -Werror -ffreestanding -march=armv8-a+crc \
-nostartfiles -nostdinc -nostdlib \
-Wno-unused-command-line-argument -I$(H)

LDFLAGS := -nostdlib --no-undefined
CFLAGS := $(BUILD_FLAGS)
CXXFLAGS := -std=c++17 $(BUILD_FLAGS)

Next, collect all the source files and collect them into a variable describing the objects that need to be built.

SRCXX := $(wildcard $(P)/*.cc)
SRCCC := $(wildcard $(P)/*.c)
SRCAS := $(wildcard $(P)/*.S)
OBJS := $(patsubst $(P)/%.S,$(B)/%.o,$(SRCAS))
OBJS += $(patsubst $(P)/%.cc,$(B)/%.o,$(SRCXX))
OBJS += $(patsubst $(P)/%.c,$(B)/%.o,$(SRCCC))

Later, we’ll use podman to build and test this with an image I’ve prepared with the development tooling needed to
cross-compile.

PODMAN ?= podman
PIMAGE ?= git.wntrmute.dev/kyle/armdev:latest

Make’s default target should be the kernel image we’re building.

all: $(I)

The list target produces an assembly language listing of the kernel.

list: $(S)

$(S): $(ELF)
$(OD) -d $(ELF) > $@

The contents of the ELF will be dumped into a memory dump. All of its symbols and relocation information are
discarded.

$(I): $(ELF)
$(OC) $(ELF) -O binary $@

The ELF file is the linked output of all the object files; the build should also produce a remapping list. In order to build
it, we need a linker map describing how memory on the Raspberry Pi is laid out. The object files are built in a pretty

6 Chapter 2. Chapter 2: Build infrastructure

Adventures in Writing an Operating System

standard way.

$(ELF): $(OBJS) $(L)
$(LD) -o $@ $(LDFLAGS) $(OBJS) -Map $(M) -T $(L)

$(B)/%.o: $(P)/%.S $(B)
$(CC) -o $@ $(BUILD_FLAGS) -c -I $(P) $<

$(B)/%.o: $(P)/%.cc $(B)
$(CXX) -o $@ -c $(CXXFLAGS) -I $(P) $<

$(B)/%.o: $(P)/%.c $(B)
$(CC) -o $@ -c $(CFLAGS) -I $(P) $<

$(B):
mkdir $@

Finally, we have a few utility targets. Right now, the disk image isn’t actually being used for anything — later on, I’d
like to get qemu emulation support working. The print- target shows the value of whatever variable is supplied; e.g.

% make print-OBJS
OBJS= build/main.o

The devbox targets use podman to build a development image for the kernel. The devdeps target assumes a Debian-like
system.

$(D): $(B)
dd if=/dev/zero of=$@ bs=128k count=8192
mkfs.msdos -n boot $@

print-%: ; @echo '$(subst ','\'',$*=$($*))'

clean :
-rm -rf $(B) $(I) $(S) $(M) $(D)

devbox-build:
$(PODMAN) build -t $(PIMAGE) -f Containerfile

devbox-run:
$(PODMAN) run -i -t -v $(PWD):/build $(PIMAGE)

devdeps:
sudo apt install binutils-arm-none-eabi gcc-arm-none-eabi \

libnewlib-arm-none-eabi libstdc++-arm-none-eabi-dev \
libstdc++-arm-none-eabi-newlib \
libstdc++-arm-none-eabi-picolibc picolibc-arm-none-eabi

.PHONY: all list clean emulate emulate-vga devbox-build devbox-run devdeps

The next step is to supply the bare minimum to build the kernel:

• a main souce file

• an assembly-language bootloader

• a linker script

2.2. Makefile 7

Adventures in Writing an Operating System

8 Chapter 2. Chapter 2: Build infrastructure

CHAPTER

THREE

CHAPTER 3: BASE-BONES SCAFFOLDING

3.1 kmain.cc

The easiest piece of this component is our kernel basic code. At first, all we need it to do is spin forever. This will go
in src/kmain.cc.

We need to make the kmain name visible to the bootloader; C++ name mangling means that otherwise, kmain will be
linked as something like _Z5kmainv. Rather than trying to to figure out what name will be and making sure that name
is known to the bootloader, we can just tell the linker to turn off mangling for this function using extern "C".

extern "C" {
void kmain();

}

void
kmain()
{

while(true) ;
}

3.2 boot.S

The bootloader starts at the beginning of the text segment.

.section ".text.boot"

.globl _start

_start:

To make things easier, we’re going to tell the last three cores to halt. To do that, we need need to query the control
processor to figure out which processor we are. There’s only four processors, so we AND by 3 to clear out any other
bits. Then, if the processor isn’t #0, jump on over to the halt label.

This is discussed on page 4-92 of [CA72TRM].

mrs x1, mpidr_el1
and x1, x1, #3
cmp x1, #0
bne halt

9

Adventures in Writing an Operating System

Now, set up our stack at 0x80000, which is the address the kernel will be loaded into in memory. This is set by the
Raspberry Pi bootloader.

mov sp, #0x80000

The base segment (.bss) is where any statically allocated variables that have been declared, but not initialized. So, we
should initialize them. We do that by starting at the beginning of the BSS section, and continuing until we’ve iterated
__bss_size times.

ldr x1, =__bss_start
ldr w2, =__bss_size

zero_bss:

str is the mnemonic for Store Register. We store the contents of the xzr1 register into the address pointed to by x1 -
which we initialized with the start of the BSS section. We add 8 to x1— 64 bits — and subtract one from the size of
the BSS. If this is not zero, we keep going. If it is, we’ll branch with link (bl) to the label kmain. The bl mnemonic
tells the assembler that this is probably calling some routine. It is an unconditional jump, and the expectation here is
that we never return.

str xzr, [x1], #8
sub w2, w2, #1
cbnz w2, zero_bss

bl kmain

The halt block loops through an endless loop, waiting for events (wfe).

halt:
wfe
b halt

3.3 The linker script

This is honestly taken almost directly from the Raspberry Pi forums. I’ll take a stab at explaining it, and hope that this
forces me to understand it. This script has three parts to it: a pointer to the entry point (e.g. where in boot.S it should
begin execution), a block describing what memory is avilable and how much of it there is, and then a block describing
the sections of memory.

We start by setting the entrypoint to the _start symbol defined previously.

ENTRY(_start)

The memory region definition follows. Quoting from the documentation2:

The syntax for 'MEMORY' is:
MEMORY
{
NAME [(ATTR)] : ORIGIN = ORIGIN, LENGTH = LEN
...

}
(continues on next page)

1 The xzr register is a pseudo-register that always returns zero.
2 This is from the info page, e.g. info ld, section 3.7.

10 Chapter 3. Chapter 3: Base-bones scaffolding

https://developer.arm.com/documentation/dui0801/f/A64-Data-Transfer-Instructions/STR--register-

Adventures in Writing an Operating System

(continued from previous page)

The NAME is a name used in the linker script to refer to the region.
The region name has no meaning outside of the linker script.

I don’t know if the memory section is strictly necessary here; the reference in the SECTIONS block could be replaced
with a hardcoded number. The Raspberry Pi bootloader firmware (in the EEPROM) loads the kernel from memory
location 0x80000, so that’ll get marked as the load address. I have 8 GB of RAM in the Pi 4, but for the sake of starting
the kernel, I’ll mark the lowest standard amount of memory, which I think is 1GB. We also shouldn’t need to write to
this memory, so it’s marked as read-execute only.

MEMORY
{

LOAD (rx) : ORIGIN = 0x000080000, LENGTH = 1g
}

Now we need to define our memory sections; we previously talked about one of them (BSS), but there are some others
we’ll need to set up. The guiding principles here are to put symbols in the same region if they need to be initialized or
if there’s a specific reason they need to be grouped together.

BSS is one such grouping: static variables that need to be initialized. Another grouping are static variables that have
been initialized and must be loaded from memory. On microcontrollers (e.g. Cortex-M series systems), that might be
from flash. This will be loaded from the SD card image, e.g. from SDRAM. On those systems, you would also pay
attention to making sure constant data and code lives in read-only memory. This matters when you don’t have a lot of
RAM, but for kOS, I’m not going to worry about that. We do have to mark certain areas for heaps. The common ones
I’ve seen is

• .text for code,

• .bss for uninitialized data,

• .stack for the stack, and

• .data for initialized data.

It’s worth noting that there’s a spec; appendix 1 covers the reserved names.

SECTIONS
{

The current point in memory, aka the first block of memory, is set to the LOAD memory address from our previous
definitions. Every section that follows continues from here. The KEEP directive ensures that the text.boot section
keeps the that particular section at the beginning. Since our bootloader (boot.S) starts at text.boot, we want that to
be where our memory starts. The linkonce directive says it should be linked in only once.

. = LOAD;

.text :
{

KEEP(*(.text.boot))
(.text .text. .gnu.linkonce.t*)

}

.rodata :
{

(.rodata .rodata. .gnu.linkonce.r*)
}

(continues on next page)

3.3. The linker script 11

https://refspecs.linuxbase.org/elf/elf.pdf

Adventures in Writing an Operating System

(continued from previous page)

PROVIDE(_data = .);

.data :
{

*(.data
.data.*
.gnu.linkonce.d*)

}

The bss section is reserved, but there’s nothing to load from memory (because we are going to initialize it to zero).
This section is accordingly marked as NOLOAD. It needs to be aligned to 16-bytes as per the spec.

.bss (NOLOAD) :
{

. = ALIGN(16);
__bss_start = .;
(.bss .bss.)
*(COMMON)
__bss_end = .;

}
_end = .;

/DISCARD/ : { *(.comment) *(.gnu*) *(.note*) *(.eh_frame*) }
}

Finlly, we define a __bss_size that we’ll use when initializing the BSS.

__bss_size = (__bss_end - __bss_start)>>3;

After building kospi64.elf, we can use objdump to view the sections - I’ve shortened the program header addresses
to make them fit, but they are 64-bit addresses.

kyle@midgard:~/src/kospi64$ make
mkdir build
aarch64-none-elf-g++ -o build/boot.o -O2 -Wall -Werror -ffreestanding
>-march=armv8-a+crc -nostartfiles -nostdinc -nostdlib -Wno-unused-
>command-line-argument -Iinc -c -I src src/boot.S
aarch64-none-elf-g++ -o build/main.o -c -std=c++17 -O2 -Wall -Werror
>-ffreestanding -march=armv8-a+crc -nostartfiles -nostdinc -nostdlib
>-Wno-unused-command-line-argument -Iinc -I src src/main.cc
aarch64-none-elf-ld -o build/kospi64.elf -nostdlib --no-undefined
>build/boot.o build/main.o -Map build/kernel8.map -T pi4.ld
aarch64-none-elf-objcopy build/kospi64.elf -O binary build/kernel8.img
kyle@midgard:~/src/kospi64$ aarch64-none-elf-objdump -x build/kospi64.elf

build/kospi64.elf: file format elf64-littleaarch64
build/kospi64.elf
architecture: aarch64, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x0000000000008000

Program Header:
LOAD off 0x00000000 vaddr 0x00000000 paddr 0x00000000 align 2**16

(continues on next page)

12 Chapter 3. Chapter 3: Base-bones scaffolding

Adventures in Writing an Operating System

(continued from previous page)

filesz 0x00008044 memsz 0x00008044 flags r-x
LOAD off 0x00000000 vaddr 0x1f000000 paddr 0x1f000000 align 2**16

filesz 0x00000000 memsz 0x00000000 flags rw-
private flags = 0x0:

Sections:
Idx Name Size VMA LMA File off Algn
0 .text 00000044 0000000000008000 0000000000008000 00008000 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .bss 00000000 000000001f000000 000000001f000000 00010000 2**0

ALLOC
SYMBOL TABLE:
0000000000008000 l d .text 0000000000000000 .text
000000001f000000 l d .bss 0000000000000000 .bss
0000000000000000 l df *ABS* 0000000000000000 boot.o
000000000000802c l .text 0000000000000000 halt
000000000000801c l .text 0000000000000000 zero_bss
0000000000000000 l df *ABS* 0000000000000000 main.cc
0000000000000000 g *ABS* 0000000000000000 __bss_size
000000001f000000 g .bss 0000000000000000 __bss_end
0000000000008000 g .text 0000000000000000 _start
000000001f000000 g .bss 0000000000000000 __bss_start
000000001f000000 g .bss 0000000000000000 _end
0000000000008040 g F .text 0000000000000004 kmain

kyle@midgard:~/src/kospi64$

3.4 The future

This will be enough to bootstrap a simple kernel. Later on, we’ll want to load a kernel from external media, whether
the SD card, an SSD, or NVMe drive. With that in mind, the definitions above should be enough to get this basic
functionaltiy working (in particularly the memory is overkill).

At this point we have a boot kernel, but no way to tell that it’s booting (except maybe with a JTAG probe), so the next
step should be getting a serial console working.

3.5 Footnotes

3.4. The future 13

Adventures in Writing an Operating System

14 Chapter 3. Chapter 3: Base-bones scaffolding

CHAPTER

FOUR

CHAPTER 4: FIRST STEPS: THE UART

The standard UART on the Raspberry Pi are pins 8 (GPIO14) and 10 (GPIO15). In their first alternate mode (ALT0),
these become TXD0 and RXD0. TXD0 should be connected to the RX pin on the UART cable, and RXD0 to the TX
pin.

Fig. 1: The cable has the standard Raspberry Pi serial console color scheme: green is TX, white is RX, black is ground,
and red is 5V/500mA. Note that the Raspberry Pi 4 won’t work with voltage input.

15

Adventures in Writing an Operating System

16 Chapter 4. Chapter 4: First Steps: The UART

CHAPTER

FIVE

APPENDIX A: LED ERROR PATTERNS

Long flashes Short flashes Error
0 3 Generic failure to boot
0 4 start*.elf not found
0 7 Kernel image not found
0 8 SDRAM failure
0 9 Insufficient SDRAM
0 10 In HALT state
2 1 Partition not FAT
2 2 Failed to read from partition
2 3 Extended partition not FAT
2 4 File signature/hash mismatch
3 1 SPI EEPROM error
3 2 SPI EEPROM write-protected
3 3 I2C error
3 4 Secure boot config invalid
4 4 Unsupported board type
4 5 Fatal firmware error
4 6 Power failure type A
4 7 Power failure type B

17

Adventures in Writing an Operating System

18 Chapter 5. Appendix A: LED error patterns

CHAPTER

SIX

APPENDIX B: THE KOS MAKEFILE

KYOSPI/64 MAKE OF GREAT SUCCESS

VARIABLES
B - build dir
D - disk (SD) image
H - header file / include dir
I - output image (place this on µSD card)
L - linker script
M - map file
P - path to sources
S - assembler listing
T - toolchain
B ?= build
D ?= $(B)/sd.img
i shake my first at the tyranny that doesn't let me name this
kyospi64.img.
H ?= inc
I ?= $(B)/kernel8.img
L ?= pi4.ld
M ?= $(B)/kernel8.map
P ?= src
S ?= $(B)/kernel8.list
T ?= arm-none-eabi

ELF := $(B)/kyospi64.elf

AS := $(T)-as
CC := $(T)-gcc
CXX := $(T)-g++
LD := $(T)-ld
OC := $(T)-objcopy
OD := $(T)-objdump

BUILD_FLAGS := -O2 -Wall -Werror -ffreestanding -march=armv8-a+crc \
-mfloat-abi=hard -mfpu=crypto-neon-fp-armv8 \
-nostartfiles -nostdinc -nostdlib \
-Wno-unused-command-line-argument -I$(H)

LDFLAGS := -nostdlib --no-undefined
CFLAGS := $(BUILD_FLAGS)
CXXFLAGS := -std=c++17 $(BUILD_FLAGS)

(continues on next page)

19

Adventures in Writing an Operating System

(continued from previous page)

SRCXX := $(wildcard $(P)/*.cc)
SRCCC := $(wildcard $(P)/*.c)
OBJS := $(patsubst $(P)/%.S,$(B)/%.o,$(wildcard $(P)/*.S))
OBJS += $(patsubst $(P)/%.cc,$(B)/%.o,$(SRCXX))
OBJS += $(patsubst $(P)/%.c,$(B)/%.o,$(SRCCC))

PODMAN ?= podman # can also be docker if you hate yourself
PIMAGE ?= git.wntrmute.dev/kyle/armdev:latest

all: $(I)

$(S): $(ELF)
$(OD) -d $(ELF) > $@

$(I): $(ELF)
$(OC) $(ELF) -O binary $@

$(ELF): $(OBJS) $(L)
$(LD) -o $@ $(LDFLAGS) $(OBJS) -Map $(M) -T $(L)

$(B)/%.o: $(P)/%.S $(B)
$(CC) -o $@ $(BUILD_FLAGS) -c -I $(P) $<

$(B)/%.o: $(P)/%.cc $(B)
$(CXX) -o $@ -c $(CXXFLAGS) -I $(P) $<

$(B)/%.o: $(P)/%.c $(B)
$(CC) -o $@ -c $(CFLAGS) -I $(P) $<

$(B):
mkdir $@

$(D): $(B)
dd if=/dev/zero of=$@ bs=128k count=8192

print-%: ; @echo '$(subst ','\'',$*=$($*))'

clean :
-rm -rf $(B) $(I) $(S) $(M) $(D)

emulate: $(I) $(D)
qemu-system-aarch64 \

-M raspi3b \
-cpu cortex-a53 \
-m 1G \
-smp 4 \
-kernel $(I) \
-serial telnet:localhost:4321,server,nowait \
-monitor telnet:localhost:4322,server,nowait \
-device usb-net,netdev=net0 \

(continues on next page)

20 Chapter 6. Appendix B: The kOS Makefile

Adventures in Writing an Operating System

(continued from previous page)

-nographic \
-drive format=raw,file=$(D),if=sd,media=disk

emulate-vga: $(I) $(D)
qemu-system-aarch64 \

-M raspi3b \
-cpu cortex-a53 \
-m 1G \
-smp 4 \
-device VGA,id=vga2 \
-kernel $(I) \
-serial telnet:localhost:4321,server,nowait \
-monitor telnet:localhost:4322,server,nowait \
-device usb-net,netdev=net0 \
-drive format=raw,file=$(D),if=sd,media=disk

devbox-build:
$(PODMAN) build -t $(PIMAGE) -f Containerfile

devbox-run:
$(PODMAN) run -i -t -v $(PWD):/build $(PIMAGE)

.PHONY: all clean

21

Adventures in Writing an Operating System

22 Chapter 6. Appendix B: The kOS Makefile

CHAPTER

SEVEN

BIBLIOGRAPHY

• [CA72TRM] ARM. ARM® Cortex®-A72 MPCore Processor Technical Reference Manual, Revision r0p1.
2014.

• [BCM2711AP] Raspberry Pi Ltd. BCM2711 ARM Peripherals, 2022. Build date: 2022-01-18. Build qversion:
githash: cfcff44-clean.

23

Adventures in Writing an Operating System

24 Chapter 7. Bibliography

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

25

	Chapter 1: Introduction
	The first target
	Booting the target
	Resources
	Footnotes

	Chapter 2: Build infrastructure
	aarch64-none-elf toolchain
	Makefile

	Chapter 3: Base-bones scaffolding
	kmain.cc
	boot.S
	The linker script
	The future
	Footnotes

	Chapter 4: First Steps: The UART
	Appendix A: LED error patterns
	Appendix B: The kOS Makefile
	Bibliography
	Indices and tables

